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such as faults may be mapped using the information on
subsurface electrical conductivity provided by the data.Inverse problems of the boundary measurement type appear in

several geophysical contexts including DC resistivity, electromag- Inverse problems with boundary measurements also
netic induction, and groundwater flow. The objective is to determine have a medical application. In a technique known as impe-
a spatially varying coefficient in a partial differential equation from dance tomography [8], current is injected into the human
incomplete knowledge of the dependent variable and its normal

body and voltages are measured. Like the analogous geo-gradient at the boundary. Equivalent 2D discrete inverse problems
physical data, the voltages are sensitive to the distributionbased on the Helmholtz or modified Helmholtz equation reduce to

systems of polynomial equations indicating that there are only a of electrical conductivity within the body, which is an indi-
finite number of exact solutions, excluding certain pathological cator of blood flow and the health of organs. Finally, there
cases. A homotopy procedure decides whether real, positive solu- is a close relationship between the above problems and
tions exist and, if so, generates the entire list. The computational

that of determining from spectral data the inhomogeneouscomplexity of the algorithm scales as MM/2, where M is the number
mass distribution of a vibrating string or membrane. Thisof model parameters to be found. Measurement errors are accom-

modated by oversampling the boundary data at additional frequen- is the classic inverse problem that once prompted the math-
cies. For test Helmholtz and modified Helmholtz inverse problems ematician Mark Kac to ask [2] ‘‘Can one hear the shape
based on (i) perfect and (ii) noisy data I generate the full list of of a drum?’’
exact solutions. The homotopy approach applies to large scale,

In this paper I show that a 2D discrete Helmholtz inversemultidimensional geophysical inverse problems but at present is
problem with enough boundary measurements reduces topractical only for small systems, up to M 5 9. Recent advances in

homotopy theory should, however, reduce the complexity, making a well-determined system of polynomial equations. Such
larger problems tractable in the future. Q 1996 Academic Press, Inc. polynomial systems have only a finite number of geometri-

cally isolated solutions. I show that a homotopy procedure
can be used to decide whether physical solutions exist and,

1. INTRODUCTION if so, to generate the entire solution list. The procedure
applies to the solution of large scale problems but is tenableIn this paper I consider the inverse problem of recov-
computationally at present only for small inverse problems.ering a spatially varying coefficient in Helmholtz and modi-
I present results from numerical studies of test Helmholtzfied Helmholtz equations from possibly imprecise mea-
and modified Helmholtz inverse problem with perfect datasurements made at the boundary. There are several
which confirm the theory. Finally, I describe a framework

practical problems in geophysics which may be formulated
for accommodating noisy data and present additional test

in this way. The electromagnetic and DC resistivity meth- results. It is important to note that in this paper I seek
ods of geophysical prospecting, for example, consist of only exact solutions to the inverse problem. This is in
inducing or directly injecting an electric current into the contrast to most practical geophysical inversion algorithms
conducting ground and measuring the resulting surface which try to find an optimal physical solution amongst all
electromagnetic fields [11]. The surface measurements con- with a given, nonzero misfit to the data. There have been
stitute the data for the inverse problem and are influenced a few other applications of homotopy techniques to inverse
by the underlying electrical conductivity. The latter is a problems [16, 17].
coefficient in Maxwell equations governing electromagne-
tism in the earth. Ore bodies, inorganic contaminant

2. BACKGROUNDplumes at hazardous waste sites, and structural features

Inverse problems are ill-posed so that the unique recov-
ery from imperfect boundary measurements of a spatially* Current address: Department of Geology and Geophysics, Texas

A&M University, College Station, TX 77843. varying coefficient in a differential equation is generally
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impossible. Uniqueness theorems, where available, do, (f) Regularity of data with respect to the model. Algo-
rithms to decide whether small changes in the model neces-however establish what amount of boundary data is neces-

sary and sufficient for unique coefficient reconstruction. sarily produce small changes in the measured response.
The stability of the inverse problem is closely related toThe theorems are of use primarily to indicate what inverse

theory is able to achieve in principle, if not in practice. Frechet differentiability. A few results in this direction are
available for mulidimensional nonlinear inverse problemsUniqueness results have been derived for the modified

Helmholtz equation governing electromagnetic induction but this is not of direct concern to this paper.
in a 1D earth [15], the 3D direct current electrical prospect-

Slow but steady progress is being made on the aboveing equation [10], and the 3D, frequency-dependent re-
fronts [7, 12]. Practical algorithms for the solution of large-duced acoustic equation [6]. Note that if there are insuffi-
scale nonlinear inverse problems, however, tend by neces-cient boundary data, the inverse problem can have any
sity to be linearized, iterative searches for isolated, locallynumber of solutions.
optimal models [9]. These algorithms often involve re-Unique recovery requires perfect data because the sto-
peated solutions to the forward problem and sometimeschastic measurement noise is not modeled by the underly-
rely on unproven Frechet differentiability. Practical algo-ing, deterministic partial differential equation. In fact,
rithms have produced results contributing to our under-when noise is present, an exact solution to the inverse
standing of the Earth’s interior, yet the relationship be-problem may not exist at all. Consider the example from
tween the true structure and a local minimum of an adDC resistivity. Suppose that the true subsurface electrical
hoc functional is not clear.conductivity distribution is known exactly everywhere and,

In this paper, I describe discrete, 2D Helmholtz andfurthermore, that Ohm’s law provides a precise physical
modified Helmholtz inverse problems and show that goalsdescription of current flow in conducting media. The volt-
(a)–(e) are readily attainable. The ‘‘catch,’’ however, isage response predicted by Ohm’s law would not match the
that my method currently works only for small discreteobservations simply because Ohm’s law is independent of
inverse problems so that scaling up the results to the levelthe inherent noise in the measurement apparatus. In this
of practical geophysical interest is not yet feasible. How-case the true conductivity distribution within the ground
ever, the theory described here is a significant step towardsdoes not exactly solve the inverse problem.
characterising the solution space of large scale, nonlinear,Apart from a uniqueness theorem, what are the essential
multidimensional inverse problems.ingredients of a complete theory for solving multidimen-

sional inverse problems of the boundary measurement
3. THE CONTINUOUS FORWARD THEORYtype? My list follows. It reflects a personal bias towards

the inverse of multidimensional elecromagnetic induc-
Consider the 2D differential equationtion data.

(a) Direct inversion to nearly machine precision. Glob- =2u 1 qs(x, z)u 5 0, (x, z) in V [ R2, (1)
ally convergent algorithms which produce highly accurate
solutions to the inverse problem by performing a finite where V is some open subset of the (x, z)-plane. If the
number of well-defined mathematical operations directly parameter q is real, Eq. (1) is the Helmholtz equation
on the boundary data. describing, for example, vibrating membranes. If q is imagi-

nary, it is the modified Helmholtz equation describing(b) Existence theory. Algorithms which decide after a
finite number of floating point operations whether a solu- monochromatic, steady state (eigt) electromagnetic induc-

tion in the earth. The function s(x, z) is real and positive,tion to the inverse problem exists. Algorithms to determine
exactly how many solutions exist. on physical grounds, and represents either the mass distri-

bution of the membrane or the electrical conductivity of(c) Full solution list. Algorithms which generate the full
the earth. The function u(x, z) corresponds to the mem-list of solutions to the inverse problem in a finite number of
brane displacement or the electric field.steps. If there are infinitely many solutions, a guarantee

The forward problem, find u given s, can be solvedthat every solution can be constructed, although it would
uniquely if Dirichlet (the function u) or Neumann (itsrequire an infinite amount of CPU time.
normal derivative ­u/­n) data are specified or measured

(d) Noisy, sparse data. A framework for accommodat- everywhere along the boundary ­V. However, this is not
ing sparse and noisy data. enough information to solve the associated inverse prob-

lem: find s given either uu­V or ­nuu­V . To solve the inverse(e) Globally optimal solutions. Globally convergent al-
gorithms which examine the solution space and return the problem it is necessary to overspecify the boundary data.

At some locations on the boundary both Dirichlet- andmember which optimizes an arbitrary functional, such as
least squares misfit or smoothness, provided by the user. Neumann-type data must be known. At any location, there
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must be at least one or the other. For definiteness, I assume
that Dirichlet data u 5 f(x, z) are given everywhere along
the boundary and that additional Neumann measurements
­nu 5 g(x, z) are made along some portion G , ­V. I
assume initially that the functions f and g are known pre-
cisely. Later I will admit the possibility that they might
contain measurement error.

The forward problem (1) is related to a pair of modified
Helmholtz problems of interest to the electromagnetic in-
duction community, i.e., TE and TM mode electromagnetic
induction in a 2D conducting earth. The associated TE
and TM mode inverse problems bear directly on the inter-
pretation of magnetotelluric (MT) data [13]. The TE mode
forward problem, for example, consists of the Laplace and
modified Helmholtz equations

=2u 5 0, (x, z) [ air (2)

=2u 1 ige0s(x, z)u 5 0, (x, z) [ earth (3)

which are valid in the semiinfinite domain (uxu R y, z1 #
FIG. 1. The finite difference mesh with N 3 N interior nodes on

z # z2). The vertical coordinate z increases downwards which the Helmholtz equation is solved. Dirichlet nodes are those on
and z 5 0 is the surface of the earth. The boundary condi- which Dirichlet data are prescribed. Dirichlet/Neumann nodes are those

on which Dirichlet data are prescribed and Neumann measurements havetions are
been made.

­zu(x, z1) 5 ige0H0 , (4)

based on (1). The problem that initially I consider describesu(6L, z , 0) 5 1 2 ige0H0z, (5)
the behaviour of nondissipative, vibrating membranes. It

u(6L, z . 0) 5 u1D(z), (6) is the Helmholtz, or wave, Eq. (1) in a rectangle with
Dirichlet data u 5 f(x, z) prescribed on the periphery.­zu(x, z2) 1 iÏige0sT u(x, z2) 5 0, (7)
Additional Neumann measurements ­nu 5 g(x) are made
along the top of the rectangle. Since this Helmholtz prob-

where e0 is the magnetic permeability of free space; g is lem is still too difficult to solve when x, z are continuous
angular frequency; z1 and z2 are the z-coordinates of the variables, I consider a finite difference approximation
top of the air layer and bottom of the earth region, respec- (FDA). The resulting, discrete inverse problem proves
tively; sT is the conductivity of the terminating halfspace tractable. I repeat the analysis for a modified Helmholtz
beneath the earth region; and H0 is the strength of the inverse problem by letting the frequency parameter q be
magnetic field at the top of the air layer. The parameter L purely imaginary. The modified Helmholtz, or time-inde-
is the half-width of the solution domain, which is centered pendent diffusion, equation describes electromagnetic in-
about x 5 0. The electrical conductivity s(x, z) model in duction in the earth. The study of its inverse problem
2D MT numerical modeling is a confined, 2D heterogeneity should be viewed as a step towards resolving the more
located at or near the center of the solution domain, set complicated MT inverse problem.
into a background plane layered structure. The electric
field u(x 5 6L, z) at the domain edges is set to the 1D 4. THE DISCRETE FORWARD THEORY
analytic solution u1D(z) appropriate for the stratified struc-
ture there. In princple L R y, but for numerical work L I now construct a standard FDA to the overspecified
is simply chosen large enough that the electric field is Helmholtz boundary value problem just described. The
not appreciably influenced by the presence of the central FDA is based on the uniform finite difference mesh shown
heterogeneity. The data for the inverse problem consist of in Fig. 1 and consists of the linear system
geophysical measurements of u, ­zu, or the impedance ratio
u/­zu on the surface z 5 0. There is a similar formulation Au 5 b, (8)
for the TM mode.

The inverse problem based on (2)–(7) is difficult to solve. where the matrix A is given by the N 3 N block tridiago-
nal matrixI therefore consider a more tractable inverse problem
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A 5 1
A1 I 0 0

I A2 I 0

5

0 0 I AN

2 . (9)

In Eq. (9), I is simply the N 3 N identity matrix while Ai

for i 5 1, ..., N are tridiagonal matrices given by FIG. 2. The finite difference mesh with N 5 2 showing the locations
and revised numbering scheme for the model parameters hsij4

i51 .

adjacent interior node hi, Nj by the first differences formula
given at the right-hand side of expression (12). The utilityAi 5 1

24 1 qs1ih2 1 0

1 24 1 qs2ih2 1

5

0 1 24 1 qsNih2
2 ,

of the Neumann boundary data for solving the inverse
problem is now apparent. The Neumann data provide some
knowledge of the solution vector u to the linear system
(8) governing the discrete inverse problem. Without partiali 5 1, ..., N. (10)
knowledge of u, the inverse problem cannot be solved.

In Eq. (10), sjk is the value of the unknown function
5. POLYNOMIAL EQUATIONSs(x, z) on the interior node labelled jk (see Fig. 1), and

h is the distance between adjacent nodes.
I now indicate the reduction of the discrete HelmholtzThe right-hand side vector b in Eq. (8) has the block

inverse problem with boundary measurements to a set ofform b 5 (b1 , b2 , ..., bN)T, where the vectors bi for i 5
polynomial equations. To keep the exposition particularly1, ..., N are each of length N. In particular, for i 5 1 and
simple I specialize to the case N 5 2. The theory for generali 5 N they are given by
N follows later. The matrix A in the case N 5 2 is the
2 3 2 block matrix

A 5

b1 5 1
2f10 2 f01

2f20

2f30

_

2fN0 2 fN11,1

2 , bN 5 1
2f1,N11 2 f0N

2f2,N11

2f3,N11

_

2fN,N11 2 fN11,N

2 .

1
24 1 qs1h2 1 1 0

1 24 1 qs2h2 0 1

1 0 24 1 qs3h2 1

0 1 1 24 1 qs4h2
2 ,

(11)

For the remaining values i 5 2, ..., N 2 1 they are bi 5
(2f0i , 0, ..., 0, 2fN11,i)T. The right-hand side vector b is the (13)
Helmholtz source vector and clearly it is determined by
the prescribed Dirichlet function f(x, z), which takes the where the interior nodes of the mesh are re-labelled ac-
value fjk on the exterior node jk. cording to Fig. 2 so that singly subscripted indices suffice

The solution vector u in (8) has a similar block form to denote the unknown model parameters, i.e., s 5
u 5 (u1 , u2 , ..., uN)T, but where ui 5 (u1i , u2i , ..., uNi)T for hs1 , s2 , s3 , s4j.
i 5 1, ..., N 2 1 and The solution vector in (8) for N 5 2 is u 5 (u1 , u2 , m1 ,

m2)T, where u1 , u2 are discrete values of u(x, z) on the
uN ; m 5 (m1 , m2 , ..., mN)T

(12)
interior nodes labelled 1 and 2 (see Fig. 2). The quantities
m1 , m2 are derived from the Neumann data, as describedwith mi 5 ( fi,N11 1 hgi).
above. Equation (8) for N 5 2 represents the four bilinear
equations in six unknowns,

The unknown electric field u(x, z) on interior node jk is
denoted by ujk . From (12), it is clear that the last N entries

(24 1 qs1h2)u1 1 u2 1 m1 5 b1of the solution vector u are determined by both Dirichlet
and the auxiliary Neumann measurements g(x) made along u1 1 (24 1 qs2h2)u2 1 m2 5 b2

(14)the top of the rectangular domain. Specifically, the Neu-
u1 1 (24 1 qs3h2)m1 1 m2 5 b3mann measurement at exterior node hi, N 1 1j, denoted

by gi for i 5 1, ..., N, is related to the electric field at the u2 1 m1 1 (24 1 qs4h2)m2 5 b4 ,
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which are obtained by explicit multiplication. The bilin- well-determined system. Thus, for N 5 3, boundary data
at three frequencies are required to generate nine cubics.earity is due to the product su which appears in the original

Helmholtz equation (1). The six unknowns are the four For N 5 4, data at four frequencies generate 16 quartics,
and so on. For convenience, I denote the system of polyno-nodal ‘‘conductivities,’’ or s-variables, in addition to the

two internal ‘‘electric field,’’ or u-variables, u1 and u2 . mial equations by F(s) 5 0.
The degree of each polynomial in F is equal to theThe next step is to eliminate the u-variables which are

of little physical interest. A little algebra (specifically, the number of interior nodes in a column or row of the finite
difference mesh. The total degree d of a polynomial systemlast two equations in (14) are solved for u1 and u2 , respec-

tively, and the resulting expressions are plugged into the is defined as the product of these degrees, i.e.,
first two equations) yields the following pair of bilinear
equations in the unknown conductivities

d 5 p
M

j51

dj , (16)
As1 1 Bs3 1 Cs4 1 Ds1s3 1 E 5 0

(15)
Fs2 1 Gs3 1 Hs4 1 Is2s4 1 J 5 0. where dj is the degree of the jth polynomial equation

Fj 5 0. In our case, d 5 NM 5 MM/2 since each polynomial
These are two equations in four unknowns. The coefficients is N-linear. It is well known (Bezout’s theorem, [4]) that
A ? ? ? J, given by a polynomial system has at most d geometrically isolated

solutions. A solution is geometrically isolated if there is a
A 5 qh2(b3 1 4m1 2 m2), B 5 4qh2m1 , neighbourhood containing that and only that solution. For

example, a system of two quadratics has at most four iso-C 5 2qh2m2 , D 5 2q2h4m1 ,
lated solutions. The bilinear Helmholtz system for N 5 2

E 5 24b3 2 16m1 1 8m2 1 b4 2 b1 therefore has at most 24 5 16 isolated solutions. For general
N, the discrete Helmholtz inverse problem clearly has aF 5 qh2(b4 1 4m2 2 m1), G 5 2qh2m1 ,
finite number of isolated solutions, although their number

H 5 4qh2m2 , I 5 2q2h4m2 , grows rapidly with N. Is there any possibility of generat-
ing them?J 5 24b4 2 16m2 1 8m1 1 b3 2 b2

To summarize, the introduction of enough Neumann-
type measurements on a portion of the boundary reducesdepend on the boundary data ( f, g), the mesh interval h,
the 2D discrete Helmholtz inverse problem to a well-deter-and the frequency parameter q. The system (15) is under-
mined system of polynomial equations in the unknown s-determined since there are fewer equations than un-
variables. It now remains to find the isolated solutions toknowns. To make the system well-determined, I supply
such systems.additional Neumann data at a second frequency q 5 q2 ?

q1 . This gives two further bilinear equations of the form
(15) without introducing any new unknowns. Hence there 6. HOMOTOPY
are now four bilinear equations in as many unknowns.

In general, for a single frequency q, a mesh containing Homotopy is a globally convergent strategy for finding
solutions to nonlinear equations, of which a system ofN 3 N interior nodes leads to a set of N polynomial equa-

tions in M 5 N2 unknown s-variables. The procedure for polynomial equations is a special case. Consider a general
zero finding problem in M-dimensional Euclidean spacegenerating these polynomial equations for arbitrary N is

as follows. First, the penultimate N equations in (8) are E M, namely,
solved for uN21 in terms of the known vectors bN and m.
This is straightforward since these equations do not involve Find s [ E M such that F(s) 5 0,
any other unknown u-vectors. Then, the resulting expres-
sion for uN21 is used to derive an expression for uN22 in

where F : E M R E M is a smooth map. This problem is
terms of bN21 , bN , and m. This procedure, which is nothing

equivalent to the associated fixed point problem
but a vector equivalent of back substitution, is repeated
until finally u1 is computed in terms of hbijN

i52 and m. Then,
Find s [ E M such that F*(s) 5 s,the expressions for u1 and u2 are inserted into the first N

equations of (8), namely A1u1 1 u2 5 b1 . These equations
are the desired system of N-linear polynomial equations if the jth equation Fj(s) is solved for sj and written as

F*j (s) 5 sj. In the discussion that follows, suppose that F*in the s-variables, with all the u-variables eliminated. Since
a single frequency generates N polynomial equations, a is a smooth nonlinear mapping B R B, where B is the

closed unit ball in E M. Define a vector functiontotal of N distinct frequencies are needed to construct a
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TABLE Ir(e, s) 5 e[s 2 F*(s)] 1 (1 2 e)[s 2 s0]. (17)

Boundary Data for Test Inverse Problems
Note that r : [0, 1] 3 B R E M. The essential homotopy

(a) Helmholtztheorem [1] for the fixed-point problem is sketched below.
The theorem for the zero-finding problem is slightly more Frequency q1 5 1.0 q2 5 2.0
complicated but the essence is the same. For rigorous Neumann data m1 5 22.0 m1 5 22.8
proofs of both theorems and the precise meaning of m2 5 20.1 m2 5 3.1
‘‘smooth,’’ the interested reader should consult the refer-

Dirichlet data b1 5 1.0 b1 5 5.5
ence. General background material on normed vector b2 5 11.4 b2 5 23.1
spaces is found in [3]. b3 5 2297.5 b3 5 2838.2

b4 5 27.45 b4 5 557.6
THEOREM. For almost all s0 [ B, there exits a smooth

(b) Modified Helmholtzzero curve c , [0, 1] 3 B of the function r(e, s) emanating
Frequency q 5 1.0from (0, s0) and reaching (1, s*), where s* is a fixed point

of F*(s). Newmann data m1 5 3.8 1 i 7.0
m2 5 1.6 2 i 0.2

I do not use this general theorem, rather I use a more
Dirichlet data b1 5 217.2 1 i 10.specialized version for polynomial systems; however, the

b2 5 30.6 1 i 25.3
general theorem provides the reader with a view of the b3 5 21078.1 1 i 553.3
salient features of homotopy theory. It follows from the b4 5 16.9 1 i 151.8
theorem that the homotopy method for solving the fixed
point (and zero finding) problems is globally convergent
with probability one. The term ‘‘probability one’’ stems
from that fact that for almost all choices of starting point The software package HOMPACK [14] available from
s0 , in the sense of Lebesgue measure, tracking the zero the Association for Computing Machinery (ACM) finds
curve c from e 5 0 to e 5 1 leads to a fixed point s* of all complex solutions to polynomial systems by tracking
F*. Global convergence of the homotopy method contrasts, the smooth paths in the zero set of the function r. Note
for example, with the local convergence of Newton’s itera- that HOMPACK transforms the polynomial zero finding
tive method, whose success depends on a good initial guess problem F(s) 5 0 into a new system which has no solutions
s0 . The zero curve c is the trajectory of an initial value at infinity so that every path is bounded.
problem whose independent variable is arc length s. The
mechanics of tracking c[s] is performed by an appropriate 7. HELMHOLTZ TEST RESULTS: EXACT DATA
ODE solver [14]. Note that when e 5 0, the zero of
r(0, s) occurs when s 5 s0 , the starting point, and when I used HOMPACK to obtain all 16 complex solutions
e 5 1, the zero of r(1, s) occurs when s 5 F*(s), the re- to the polynomial system
quired fixed point.

I will now specialize to systems of polynomial equations. 27635 ? s1 2 200 ? s3 1 2 ? 5s4
Let C M be complex M-dimensional Euclidean space con-

1 1250 ? s1s3 1 1212 ? 75 5 0taining vectors a 5 (a1 , ..., aM) and b 5 (b1 , ..., bM). Define
a function 146 ? 25s2 1 50 ? s3 2 10 ? s4

1 62 ? 5s2s4 2 293 ? 5 5 0 (19)r(e, s) 5 (1 2 e)G(s) 1 eF(s), (18)
242625 ? s1 2 2560 ? s3 2 155 ? s4

where G and F are systems of polynomials. The following
1 7000 ? s1s3 1 3974 ? 5 5 0

basic theorem [4] applies to the zero finding problem for
polynomial equations. 28640 ? s2 1 140 ? s3 1 620 ? s4

2 7750 ? s2s4 2 3137 ? 5 5 0.THEOREM. Let G : C M R C M be given by Gj(s) 5
bjs

dj 2 aj , for j 5 1, ..., M, where aj and bj are nonzero
complex numbers and dj is the degree of Fj(s). For almost This system of bilinear equations is equivalent to the dis-

crete Helmholtz inverse problem for N 5 2. The inputall a, b [ C M, the set of zero curves of r in (14) is d smooth
paths emanating from h0j 3 C M, which either diverge to data which generated this system are listed in Table I(a).

The full solution list is given in Table II(a). The systeminfinity as e approaches 1 or converge to solutions to F(s)
5 0 as e approaches 1. For this choice of G(s), each geomet- (19) has exactly three real positive solutions (including the

‘‘truth’’, s 5 h0.2, 0.3, 6.1, 3.7j), a real negative solutionrically isolated solution of F(s) has a path converging to it.



HOMOTOPY AND INVERSE PROBLEMS 437

TABLE II close to real solutions to the actual, noiseless system. How-
ever, in general, the behavior of solutions to polynomialFull Solution Lists
systems whose coefficients are perturbed by noise is not

s1 s2 s3 s4 well understood. The treatment here should be regarded
as fairly preliminary.

(a) Helmholtz
The procedure for generating a synthetic noisy data set1 0.200 0.300 6.10 3.70

is as follows. Perfect Dirichlet and Neumann data are pre-2 0.126 0.289 6.12 3.70
3 0.153 0.0861 6.62 5.38 scribed at N9 distinct frequencies, where N9 . N. The
4 24.56 0.0797 6.11 0.0339 Neumann data are perturbed by adding to each of them
112 infinite solutions a normally distributed random deviate with zero mean and

a standard deviation equal to some fixed percentage of the(b) Modified Helmholtz
value of the measurement. The noisy Neumann data are1 0.200 0.300 6.10 3.70

2 0.0963 0.228 6.11 3.72 then used to compute the coefficients of the governing
3 0.207 0.395 6.10 3.68 polynomial equations.
4 0.0635 0.519 6.11 3.66 For the case N 5 2 and N9 5 10, I used HOMPACK
112 infinite solutions to solve a total of (10

2
) 5 45 noisy polynomial systems, one

for each pair of frequencies. The distributions of model
parameters from the solutions (if any exist) for which all
the model parameters in s are real and positive are shown
in Figures 3(a)–(c), for noise levels 0–5%. The frequenciesand 12 complex solutions at infinity. There are no other

solutions to this inverse problem. were chosen logarithmically spaced in the range 0.001–1.0.
The distributions of the model parameters from the physi-
cal (real, positive) solutions cluster about the true solution,8. HELMHOLTZ TEST RESULTS: NOISY DATA
indicating that this method of treating noisy data is quite
effective. Another approach that might produce a goodThe theory described in the previous sections permits

generation of the entire solution list when the boundary estimate of the true model parameter values is to solve
polynomial systems that are obtained by averaging thedata are perfect. It is guaranteed that at least one solution

exists, namely the ‘‘true’’ solution which generated the noisy coefficients in some way.
data. In reality, however, the boundary data are never

9. MODIFIED HELMHOLTZ TEST RESULTSknown precisely. This is due not only to the unavoidable,
inherent error in the measurement apparatus but also to

Consider the same discrete inverse problem as above,the fact that the FDA is not an exact representation of
but based now on the modified Helmholtz equation; i.e.,the underlying physics generating the observations.
the parameter q in Eq. (1) is pure imaginary. SolutionsMy approach for solving the inverse problem based on
u(x, z) of the modified Helmholtz equation are complex-noisy data is to model the measurement error as uncertain-
valued functions, unlike solutions to the Helmholtz equa-ties in the Neumann measurements hgijN

i51 , using normally
tion which are real functions. Therefore, the Dirichlet anddistributed random deviates. This procedure is designed to
Neumann data for the modified Helmholtz inverse prob-mimic measurement errors that occur in actual geophysical
lem are complex numbers. Suppose that data like thoseexperiments. The Gaussian errors I add to the Neumann
listed in Table I(b) are given or measured at the boundarydata propagate into the polynomial coefficients, resulting
of a mesh with N 5 2. These data generate the followingin a set of ‘‘noisy’’ polynomial equations. The noisy polyno-
system of four bilinear equations in the unknown s-vari-mial equations may have no real, positive solutions. For
ablesinstance, the solutions listed in Table II(a) do not satisfy

the noisy polynomial equations. To make progress, I pro-
ARs1 1 BRs3 1 CRs4 1 DRs1s3 1 ER 5 0pose to add Neumann data at additional frequencies.

If a system of polynomial equations with a real solution RRs2 1 GRs3 1 HRs4 1 IRs2s4 1 JR 5 0
(20)has its coefficients perturbed, then the real solution may

AIs1 1 BIs3 1 CIs4 1 DIs1s3 1 EI 5 0be perturbed into a complex solution (i.e., with non-zero
imaginary parts). If the magnitude of the perturbation is FIs2 1 GIs3 1 Hs4 1 IIs2s4 1 JI 5 0.
reduced towards zero, the imaginary parts will converge
to zero. The relative rates of convergence will be (grossly) The coefficients in the above equations are just the real

and imaginary parts of the coefficients A, ..., J given inrepresented by the condition number of the real solution,
if it is not singular. One might in practice consider complex Section 5, for example, A 5 AR 1 iAI , and so forth. In

Section 5, the coefficients A, ..., J were real.solutions with ‘‘small’’ imaginary parts as possibly being
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FIG. 3. The distribution of model parameters s1 , ..., s4 from physical (real, positive) solutions to the noisy polynomial systems corresponding
to the Helmholtz inverse problem, for different levels of measurement error in the Neumann data: (a) 0%; (b) 1%; (c) 5%. A peak in a histogram
at the abscissa value of unity (s/si 5 1) indicates that the model parameter clusters about its true value. For this run, reliable estimates of s3 5

6.1 and s4 5 3.7 therefore can be made in the presence of 5% noise in the Neumann measurements. Model parameter s1 5 0.2 cannot be extracted
even in the presence of 1% noise. Model parameter s2 5 0.3 can be estimated reliably from data containing 1%, but not as much as 5%, noise. In
Figs. 3 and 4, the vertical axis represents the number of physical solutions in a horizontal bin.
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Note that the system (20), four equations in as many on the Helmholtz and modified Helmholtz equations.
Many practical geophysical inverse problems can be formu-unknowns, were generated by boundary data at a single

frequency. This stands in contrast to the Helmholtz equa- lated in this way. The method decides whether solutions
to the inverse problem exist and, if so, generates the fulltion which required data at a pair of frequencies to generate

a well-determined system of bilinear equations. A single solution list in a direct, i.e., non-iterative, manner. Globally
optimal models are identified by inspecting the full solutionfrequency suffices in this case because each modified Helm-

holtz boundary datum, see Table I(b), consists of a pair list; e.g., the smoothest model can be determined readily.
Noisy data are treated by adding additional Neumann dataof independent components, the real and imaginary parts.

The data listed in Table I(b) generate the polynomial and adopting a statistical approach to the model parameter
identification. Although the homotopy method can be usedsystem
in principle for arbitrarily large scale inverse problems, the

214537 ? 5s1 2 700 ? s3 2 5 ? s4 size of the solution space increases dramatically with the
number of model parameters so that only small scale prob-1 2375 ? s1s3 1 4298 ? 5 5 0
lems are at present tractable.

23600 ? s2 1 175 ? s3 1 20 ? s4 Penalty terms such as smoothness, or positivity, are
sometimes imposed as side conditions in an inverse prob-1 1000 ? s2s4 2 1171 ? 5 5 0 (21)
lem in order to stablize the solution. The penalty terms

226612 ? 5s1 2 1380 ? s3 2 40 ? s4 often can be represented by polynomial functions of the
model parameters. Incorporating polynomial side condi-1 4375 ? s1s3 2 2185 ? 5 0
tions into the inverse problem leads to a polynomial pro-

487 ? 5s2 2 95 ? s3 1 160 ? s4 gramming problem [18]. The first-order necessary condi-
tions for optimality in such problems are, once again, a2 125 ? s2s4 2 20 ? 5 0,
polynomial system of equations [18]. The method de-
scribed in this paper can therefore be used to solve thewhich I solved using HOMPACK. The full solution list is
polynomially constrained inverse problem.given in Table II(b). There are four real positive solutions

The discrete TE and TM modes magnetotelluric inverse(including the ‘‘truth’’) and 12 complex solutions at infinity.
problems are based on the modified Helmholtz equationsThere are no other solutions to this inverse problem.
and can therefore be reduced to systems of polynomialNext, I generated noisy modified Helmholtz data at N9
equations. The method described in this paper might soon5 45 different logarithmically spaced frequencies ranging
enable the solution space of a magnetotelluric data set tofrom 0.001–1.0. Measurement noise was modeled as uncer-
be completely mapped. This would represent a significanttainties in the real and imaginary components of the Neu-
breakthrough in geophysical inverse theory and wouldmann data using independent random deviates drawn from
greatly improve the reliability of inferences about the sub-a normal distribution, as before. The deviates were scaled
surface electrical structure.so that the real and imaginary parts contained, on average,

I considered test Helmholtz and modified Helmholtzthe same relative error. Since boundary data at only a
problems on a small mesh with N 5 2 (M 5 4) and foundsingle frequency is required to generate a well-determined
in each case that there were 16 homotopy paths to track.system of equations, there are again 45 noisy polynomial
For N 5 3 (M 5 9) it is easy to verify that there are 19,683systems to solve; this time, however, there is only one
paths. Each path takes about one second to track on a 30system per frequency. After applying HOMPACK again,
Mflop computer, so that as M increases, the ability tothe resulting distributions of the model parameters for the
solve the inverse problem in a reasonable length of timephysical solutions are presented, for noise levels 0%, 1%,
decreases dramatically. There are at least two strategiesand 5%, in Figs. 4(a)–(c). The total number of physical
for reducing the CPU requirements. The first is to exploitsolutions is smaller for this problem than for the Helmholtz
the recently developed multi-homogeneous polynomialinverse problem. Also, for a given noise level, more Helm-
continuation methods of grouping variables [5]. Theholtz than modified Helmholtz model parameters can be
second is to improve upon the naive homotopy Gj(s) 5extracted reliably from the distributions. Based on this
bjs

dj 2 aj . A more efficient homotopy G, chosen afterlimited amount of statistical evidence, the inversion of the
closely examining the structure of the polynomial equa-modified Helmholtz data appears to be more susceptible
tions, can greatly reduce the arc length of the solutionto noise than the corresponding Helmholtz inversion.
paths. Adopting the above considerations will make larger
problems more tractable in the future. Another major con-10. DISCUSSION
sideration for the future is the coming availability of mas-
sively parallel computers. Each path can be tracked by aThe method described in this paper can be used to pro-

vide complete solutions to discrete inverse problems based separate processor, enabling larger problems to be solved.
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FIG. 4. The distribution of model parameters s1 , ..., s4 from physical (real, positive) solutions to the noisy polynomial systems corresponding
to the modified Helmholtz inverse problem, for different levels of measurement error in the Neumann data: (a) 0%; (b) 1%; (c) 5%. Model parameters
s1 and s2 cannot be extracted from data containing 1% or greater noise. Only model parameter s3 can be estimated reliably up to the 5% noise level.
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